Intravascular Ultrasound for Complex Cases

The Practical Value of IVUS

Shigeru Nakamura M.D.
Intravascular ultrasound imaging provides short axis information about the vessel. Image quality is not as clear as for angiography, which perhaps explains why the majority of interventional cardiologists don’t like it, but reviewing the IVUS tapes enables you to see what you missed under angiography and you can learn lot from IVUS.

An operator trying to improve his/her coronary interventional skills must be familiar with IVUS.

What IVUS gives us:
Lumen area
Vessel
Plaque (soft?, calcified?, location?)
(1) Using IVUS to find lesions

Angiography provides longitudinal information, and sometimes misses very short lesions ("napkin ring" stenosis).
Intermediate stenosis by angiography

RAO caudal projection

Straight caudal projection
Lesion treated with a 9.0x 3.5mm NIR stent

1st dilatation at 15atm, then IVUS, then 2nd dilatation up to 18atm.
Final angiography

Angioscopy

RAO caudal
POBA

Straight caudal

LAO caudal
Angiography merely shows intermediate stenosis while IVUS reveals critical eccentric low hypo-echoic plaque. Angioscopy showed yellow eccentric plaque.

A short 3.5mm NIR stent was implanted at 15atm. IVUS showed poor stent-expansion. Inflation pressure increased to 18 atm.

Final angiography suggested a good result; IVUS revealed plaque is still not adequately compressed. Angioscopy showed protrusion from the stent struts.
(2) Which is the true lumen?

The patient had undergone rotablation and balloon dilatation 3 months previously. There is a parallel channel in the mid RCA. Before stenting, we made sure the wire was in the true lumen. Also there is an eccentric stenosis at the RCA ostium, which we stented with a 3.5mm Multilink at 18atm. The mid RCA was stented with a 3.5mmx 24mm S670 at 12atm.
3 Months After Rota + Balloon

Which is the true lumen?
Guidewire in place

RAO cranial

eccentric ostial stenosis

atrium

pericardial

Connection site

cardiac

apex

Pseudo-lumen

Connection site
3 months follow up of distal PTCA site. The lesion open due to “horse shoe” plaque disruption.
In this case, we “lost” the guiding catheter and system following recanalization of a CTO in the proximal RCA. There was a large spiral dissection from proximal to distal.

In order to ensure successful re-crossing with a guide wire, we have to make sure the wire in the true lumen.
Are you in the true lumen?

Baseline

Post-recanalization spiral dissection
White arrow shows the pseudo-lumen. The sharp marginal branch lumen take-off, seen by IVUS, shows the wire is in the true lumen.
The lesion was successfully treated with two long stents. When you need to re-cross a spiral dissection, you can use IVUS to check whether or not your wire is in the true lumen.
(4) Stenting Constricted Lesions

A simple lesion in the mid RCA, with vessel “shrinkage” or constriction.
Baseline angiography
A: Proximal reference
B: Lesion
C: Constriction site
D: Distal reference
Pre-dilatation: 2.5mm, 10atm.
Side-branch dilatation: 2.5mm, 10atm. For RV branch
Wire kept in the RV: Multilink plus. 3.5mm, 9atm
Post-dilatation: 3.5mm, 14atm
Final angiogram

LAO

RAO
The recently-developed Atlantis catheter gives 40MHz imaging that picks up red blood-cell reflections. It can be difficult however to recognize the lumen surface.

In this situation, using contrast injection or saline flush should provide a clearer image.
Proximal LAD lesion

RAO caudal

LAO cranial
Tightest Site of lesion

Standard image Saline flush

CVIS Atlantis IVUS catheter
Final IVUS Image of Lesion

Standard image

Saline flush

Movie 4
When using negative contrast, catheter position is sometimes affected by the force of the flushing motion.

To avoid this problem, hold the IVUS catheter.
(6) Stent-edge dissection

Stent-edge dissection can be very difficult to be treat.
Stenting a CTO in a diffusely-diseased RCA

LAO

After stenting
Visible edge-dissection between stents
Follow up angiography shows stent-restenosis at 3 months
Distal-edge dissection

Dissection extending to the neo-intima.
At follow up, enlarged vessel size reveals vessel remodeling.

(1) ↠ noontime
(2) *: proliferation
(3) Remodeling
(7) IVUS-guided Stent Implantation

Key points for IVUS-guided stenting

1) Complete apposition of stent struts to the vessel wall.
2) Stent-lumen CSA larger than the distal reference lumen area.
3) Symmetric expansion.

But how do you get symmetric expansion?
Baseline IVUS imaging

Irregular lumen surface

Proximal ref.

Distal ref.

Lesion
Stent Implantation

Multilink stent 4.0mm at 10atm.
IUVS showed asymmetric stent-expansion. Higher pressure deployed (16atm).

4.0mm at 16atm. Still insufficient expansion
Additional inflation with short non-compliant balloon.

4.0x 9.0mm non-compliant balloon at 18atm.

Worse expansion than before
Balloon downsized to improve symmetry of expansion

3.5mm at 20atm.
Final angiogram

Spider view shows indentation at the stented site.

RAO caudal shows good dilation.
6 months follow up angiography
Baseline IVUS shows eccentric non-calcified plaque. 4.0mm Multilink stent implanted at 10atm resulted in asymmetric expansion and poor luminal area.

Use of a 4.0 non-compliant balloon at 18 atm only resulted in worse symmetry. A 4.5mm balloon would risk a perforation.

Downsizing the balloon and increasing the pressure improves stent symmetry but not the lumen area. This is the step-back method of eccentric expansion.

Follow up angiography showed no restenosis. IVUS showed neo-intimal proliferation.
IVUS-guided DCA

(8) Understanding plaque location in the LAD
How to use IVUS Guidance

IVUS imaging gives a view along the artery from proximal to distal.

The upper side of the IVUS image is not necessarily the surface of the heart. The image may be upside-down or rotated.

Anatomical landmarks (side branches) are very important for understanding plaque location. Understanding the theory of branching is crucial for DCA.
Anatomical Theory of Branching in the Left Coronary Artery

If image top is the pericardium site,

Cx : 7 to 8 o’clock
diagonal : about 9 o’clock
septal: 4 to 5 o’clock
branching off
The pericardial site is not always at the top of the IVUS image. The operator must rotate his/her own mental image to match rotation of the IVUS image.

Picture the diagonal branch at 9 o’clock.
Key IVUS Image in the LCA is the diagonal branch.

The diagonal and the LAD branch off along the same geometric plane. This plane is almost parallel to the pericardium. Orient the diagonal ostium at 9 o’clock in your mind and for all other IVUS imaging. Now the pericardium is at the top, the cardiac site is at the bottom, RV on the right, and LV on the left.
Stenosis in the mid LAD but where exactly is the plaque?
Rotated images

left coronary artery

diagonal
circumflex
septal
Plaque location is at a 130° (clockwise) rotation from the diagonal branch. In the same direction as the septal branch.

Image the diagonal branch at 9 o’clock.
The plaque is on the septal side.
Plaque is opposite the diagonal
LAO 60 caudal 30

Plaque is opposite the diagonal
IVUS-guided DCA

(9) Understanding IVUS guidance in the RCA
Anatomical Theory of Branching in the Right Coronary Artery

According to anatomy, imaging the upside of the artery will necessitate a different direction from coronary angiography.
Using Key Branches

The posterior descending (PD) branch usually branches off almost perpendicular to the distal RCA. The PD is coming towards you when you image the RCA using the LAO projection on the angio-monitor.
Key Image of the RCA

RAO view

atrium

apex

Pericardium

PD branching direction
Rotate the PD to 3 o’clock in your mind and for all IVUS images.

After rotation, the cardiac side is on top, the pericardium on the bottom, right apex on the right, and the atrium on the left.
Different Directions of RV branches

RV branches

Posterior descending branch

Sinus node artery

LAO 140 cranial
Rotated image with PD branch set to 3 o’clock

atrium

pericardium

apex
Plaque is at the pericardial site
Orient the cutter-window towards the lateral branch. That is your start-position. Rotate 90° clockwise. Also rotate 90° anti-clockwise rotation from start-position.
For DCA in the RCA, the support wire can alter artery shape. Make sure you re-check the lesion using contrast.
(10) DCA in the ostial LAD

Severely-angled CX branches
Pre DCA

LAO 45 Cranial 30
Anti-clock wise rotation from the CX

60° anti-clock wise rotation from the CX

120° anti-clock wise rotation from the CX

180° counter clock wise rotation from the CX
First DCA

RAO 30 caudal 25
Repeat IVUS and repeat atherectomy

Face the cutter-window towards the circumflex and rotate anti-clockwise for 180°.
IVUS Guidance enhances plaque removal.

ostial LAD plaque

Pre 1st. DCA 2nd DCA Final

LAD and Cx
IVUS will usually be used >3 times during your DCA procedure to check the evolving vessel situation.

IVUS is useful for verifying plaque removal and the direction of any additional atherectomy.

The new Flexi-Cut system removes more plaque than previous devices. One point of caution, however, is that it is harder to feel the plaque being cut, so be on your guard against coronary perforation.
Summary

IVUS is not necessary for all coronary interventions. But there is no question that it helps you understand what is happening during coronary intervention.

It really does take you “beyond angiography”.